Journal of Computational Physit8§0,1-16 (1999)

®
Article ID jcph.1998.6160, available online at http://www.idealibrary.conlnE &l.

Symbolic Computation as a Tool for High-Order
Long-Wave Stability Analysis of Thin Film
Flows with Coupled Transport Processes

U. Lange* K. Nandakuma#;t+ and H. Raszillier

*Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta,
Canada, T6G 2G6iLehrstuhl fir Sttdmungsmechanik, UniverattErlangen-Nirnberg,
Cauerstr. 4, D-91058 Erlangen, Germany
E-mail: fkumar.nandakumar@ualberta.ca.

Received February 6, 1998; revised October 1, 1998

Many fundamental studies based on the evolution equations derived by long-wave
approximation have contributed to the fact that the dynamics of a thin film flowing
down an inclined plane is now one of the best-understood problems of hydrody-
namic stability. In most engineering applications however, the stability behaviour of
the film flow is modified by complex coupled transport processes, and because of
the huge amount of algebra needed to derive the evolution equations in these cases,
an investigation by numerical methods is often preferred by engineers. In this pa-
per, we illustrate how computer algebra techniges can be used to derive and analyse
long-wave evolution equations even for very complex situations automatically, thus
making the advantages of symbolic solutions available for such applications. Us-
ing these methods, higher-order approximations can also be obtained automatically.
These are of interest since they can provide heuristic estimates for—and extensions
of—the range of validity of the long-wave approximatione 1999 Academic Press

Key Words:numerical analysis; automated algorithms; hydrodynamic stability;
nonlinear effects.

1. INTRODUCTION

Since the experiments of the Kapitza [1] in the forties, the interfacial wave patte
developing on a thin liquid film flowing down an inclined plane have been investiga
by many researchers as a fascinating example for complex nonlinear dynamics (s
reviews by Chang [2] and Lin and Wang [3]). In addition to this fundamental interest,
understanding of the stability behaviour of thin liquid films is of great importance for m:
industrial applications like coating and drying, heat exchangers, or chemical reacto!
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2 LANGE, NANDAKUMAR, AND RASZILLIER

most of these applications the stability behaviour is modified by the interaction of heat :
mass transport processes with the flow.

For low Reynolds number flows, the long-wave approximation proposed by Benney
turned out to be a very successful model which captures much of the nature of transitic
flow of thin films. It is based on the expectation that the wavelength of unstable interfac
disturbances of uniform film flow must be large compared to the film thickness becaus
the stabilizing effect of surface tension for short waves. Thus—by an asymptotic analysi
the limitae — 0, witha being the dimensionless wavenumber—a single nonlinear evolutic
equation for the shape of the free surface of the film can be derived from the Navier—Stc
equations (and any transport equations coupled with them). The technical effort of a gt
tative analysis is reduced dramatically by considering this evolution equation rather than
original system, such that simple formulas describing the dependence of the linear stak
of uniform film flow on the parameters can be found. Moreover, the primary bifurcation
unstable uniform film flow into permanent wave trains can be predicted readily by wea
nonlinear stability analysis (see, e.g., Benney [4], Lin [5], and Gjevik [6]). More comple
dynamical phenomena such as solitary waves (see, e.g., Bualif{7]) or the stability
of two-dimensional permanent waves with respect to three-dimensional disturbances
Jooet al.[8]) were also studied using the long-wave approximation.

Usually the asymptotic expansion is truncated at first ordeissuming a strong surface
tension influence. Lin [5] investigated the second-order evolution equation which allo
for consistent prediction of the dispersion of the linear and nonlinear waves. For the c
of weak surface tension, Nakaya [9] and Chang [10] considered the third-order evolut
equation.

The long-wave approximation was also applied successfully to investigate film flows c
pled with complex transport processes such as evaporation and condensation (see Bure
et al.[11] and Jocet al.[12]), which have important applications in engineering.

For a more complete outline of the fundamental stability results obtained by the lor
wave approximation we refer to Chang [2] and Lin and Wang [3]. In the present paper,
are concerned with the application of this well-developed theory to engineering proble
From that point of view, the following two issues are addressed.

First, many practical problems involve heat and mass transfer, or even chemical reacti
Since the stability behaviour of such systems may depend on many parameters, the |
wave theory has the advantage that the dependence of the relevant stability results o
parameters can be obtained directly as formulas rather than by extensive parameter st
which would be necessary using numerical methods. However, even the derivation of f
order evolution equations can already be a very tedious and error-prone task for probl
involving transport processes, and it is practically impossible to derive higher orders of
long-wave approximations manually. Fortunately, all the algebraic manipulations neces:
for the derivation of evolution equations can be formulated as a standardized algorithm
implemented in a computer algebra system, as, for example, MAPLE [13]. After specifyi
the general form of the governing equations and a model problem in Section 2 of this pa
we illustrate such an implementation in Section 3, which automatically computes high
order evolution equations for film flow coupled with an arbitrary number and arbitrary typ
of transport processes.

This symbolic algorithm extends the basic ideas as given by Atherton and Homsy [1
who used an early version of the computer algebra system REDUCE in the mid-sever
to calculate the evolution equation for axially symmetric and three-dimensional isotherr
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film flow. It should be pointed out, however, that the second-order approximation state
their paper contains errors.

A second issue of practical importance is the fact that the range of validity of the fi
order approximations may be very limited, as is indicated by comparison with experime
stability results and comparisons with numerical solutions of the Orr—Sommerfeld equat
(see, e.g., Krantz and Owens [15], Latial. [16]). Theoretically, the long-wave approxi-
mation should be valid for small wavenumbers and small Reynolds numbers, but the
no quantitative a priori estimate for this range of validity. Such an estimate would be \
useful in order to assess the suitability of the approximation for a specific application.

Since many of the methods of linear and weakly nonlinear analysis can also be 1
automatized by computer algebra, it is not only possible to derive, but also to ana
the higher-order evolution equations. In Section 4, we perform a linear stability anal
for the fifth-order equation and illustrate how the comparison of the results of differ
order can be used as an indicator for the range of validity of the long-wave approxima
Using Paé-approximation, we show that the information obtained at fifth order is ev
sufficient to predict the published experimental data for shorter wavelengths and relati
high Reynolds numbers remarkably well.

Using Landau theory as an simple example for a weakly nonlinear analysis, we illust
in Section 5 that computer algebra methods also provide automatic modeling of the prir
bifurcation of the uniform flow into permanent waves, even if complex transport proces
are involved. Similar to the question of the range of validitywiralready discussed in
connection with the linear analysis, it is useful to know how far away from the bifurcati
point the weakly nonlinear analysis will still be valid. It is illustrated that the comparis
of the results obtained using different orders of the long-wave approximation provides |
a heuristic criterion, too.

2. GENERAL FORM OF THE GOVERNING EQUATIONS AND A MODEL PROBLEM

The governing equations for most problems involving a film flow with sevératbupled
transport processes can be written in the dimensionless form

V.u=0, Q)
Reu; + (U-V)u) = =Vp+ Au+ G, (2)
Re Sp((Ct + (u-V)Ci) = AG + F i=1...N). 3)

The velocity fieldu = (u, v, w) is scaled with a characteristic velocitly which may depend
on the specific problem under consideration. The spatial coordinatgsz) are scaled
with the unperturbed film thickneds, and the time coordinateis scaled byH/U. The
transport quantitie§; are also scaled by problem-dependent characteristic vRjugéhus,
Re= poU H/u denotes the Reynolds number, wigh being a characteristic value of the
density andt being the dynamic viscosity of the liquid, and the = v/ D; denote Schmidt
(or Prandtl) numbers witlD; being the diffusivities of the transport processes.

The source ternG in Eq. (2) models the gravitational force and is usually constar
however, it may also account for bouyancy effects caused by variations in the trans
quantities. The source terrfrsin the transport equations (3) may model chemical reactior
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These source terms are scaled by

H 2 H 2
G* and F F. 4)

G= -
DT !

_M—U

Here the terms with the asterisk denote the dimensional quantities. The velocity field i
satisfy the no-slip conditionsi(= 0) at the wall = 0), as well as the kinematic and stress
boundary conditions at the free surfage<h(t, x, z)):

ht+UhX=U
mT-T-n=K fory = h(t, x, 2). )
®T-T-n=L

Here,T =—p- | +(Vu)" + (Vu) denotes the dimensionless stress tensot@denotes
the unit tangential (normal) vectors on the free surface. The right-hand sides of the nor
and tangential stress conditions may represent models for different surface forces an
scaled by
H H
K=—K* and L=—L" (6)

nuU J710)
Most of the physically relevant boundary conditions for the transport equations can
modeled by operators of the form

B,(Ci) =0 fory =0,

(1)
Bs(Ci,u) =0 fory = h(t, x, 2).

As an example for a transport process coupled with the film flow, we will assume through
this paper that a species is absorbed from the ambient air into the film, where itis consu
by a first-order chemical reaction (see Fig. 1). While the density considered to be
independent of the concentrati@f of the species, the dependence of the surface tensi
onCj is modeled by

0 =00 —0c(Cy — CL), (8)

o0

where C%, is the concentration of the species in the ambient air. For this example, t
dimensional source terms re&@f = (pgsing, —pgcosp, 07 and F; = —k.C; with g
denoting gravitational acceleratiof the inclination angle, anki the velocity of the first
order reaction. Thus, if we take the concentration in the ambient air as the character
scale ("1 =C%,) and choose the surface velocity & pgsingH?/2u) of the film as the
scale for the velocities, the dimensionless source terms in Egs. (2) and (3) read for
example problem

G =21, —cotg,0)" and F,=—y%C; (9)

with 2 = H?k, / D1 being a dimensionless measure of the reaction velocity. The right-ha
sides of the stress conditions are given by

L=2M-(t-VC;) and K =-2(V-n)-(S—M(Cq—1) (10)

with S=o0../(pgsingH?) being the Weber number ard = 0.C* /(pgsingH?) being
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FIG. 1. Consumption by first-order chemical reaction of a species absorbed into a thin film flowing dowr
inclined plane.

the Marangoni number. Finally we assume that, while there is ho mass transfer throug
wall, the mass transfer through the surface can be described by a mass transfer coef
h.. Hence the boundary operators for the mass transport equation are given by

B,(Cy) = E;—Cyl =0 and Bs(Cy, u=n- VC; — Sl"(l — Cl) =0. (11)

Here,Sh=h H/D is the Sherwood number.

3. OUTLINE OF THE SYMBOLIC ALGORITHM

In the two-dimensional casé (dz=0), it is convenient to introduce a stream functior
¥ by (U, v) = (Yy, —¥x). Equations (1)—(3) can then be reduced to

ReAyr + [y, Ay] = Ay + rotG, (12)
Re Sg(Ci)t + [, Ci] = ACi + Fi i=1...N). (13)

where we used the notation§ g] := fygx — fxgy and rog := (G1)y — (G2)x.
The no-slip conditions at = 0 yield in terms of the stream function

Y =0 and ¢y =0. (14)

The kinematic condition at the free surface can be written in the following “conservat
form” (using the notationy (h) := ¥ (t, x, h(t, X)) and the chain rulgy (h) + v, (h) - hy =
[v (M]x):

hy +[¢(h)]x =0 fory = h(t, x), (15)
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The following conditions can be derived from the stress conditioys=ah(t, x):

1+ h2
—p—21_7h>2(1ﬁ K+21 hZL 0, (16)
Yyy — Yex — (L= h2) 7 (Ahyypey — (L+h2)L) = 0. (17)

The pressure in condition (16) can be eliminated by replacing that condition by its tanger
derivative and then using the momentum equations

Px = Vxxy + Yyyy — R&Wryt + [, ¥y]) + Gy (18)
Py = —Yxxx — 1/fxyy - Rqlﬂxt + [Wv 1,fo]) + Gy (19)

to eliminatep, and py in the new condition (see Atherton and Homsy [14]). Note that thi:
means that the highest derivative with respeot to the new condition will bejyyy. Also
note that all these manipulations of the equations can easily be done automatically |
computer algebra system.

The crucial step in the long-wave approximation is to take a large wavelength as a c
racteristic length scale for thedirection rather than the film thicknesswhich is only an
appropriate length scale for thedirection. This suggests a rescaling of the independel
variables,

t—> alr, X — a1, y—7n (20)

with « <« 1 being the dimensionless wavenumber. Moreover, we assume a “strong” surf
tension, i.e.S = Soe~2 with S= O(1). Now we substitutey andC; by asymptotic series
ina

V= Yo+ Y1 + Yoo’ + - - (21)
Ci =Cio+Ciio+Cia®+--- (22)

and by equating like powers af—a standard operation of computer algebra systems—w
obtain a hierarchy of equations. For our example, this hierarchy can be written in the fc

Yo = An(Wo, ..., ¥n_1,C10...Cyn-1), n=012... (23)
Cinyn — ¥2Cin = Ba(Yo, - .., ¥n-1, C10. .. Crn-1), n=0,12.... (24
Because the boundary conditions (14) and (11yfandC, are linear, all orderg,, and

C1.n have to satisfy them. The (nonlinear) stress conditions (16), (17) yield the followil
conditions fory, at the surface = h(z, &):

Yy (T, €, 0(7,8)) = an(Yo, ..., ¥n-1, Cro...Con-1), n=0,12... (25
1//n,rm(fv gv h(f» é)) = bn(w()v ) anla Cl,O .. Cl,nfl)v n= 07 1’ 2 oo (26)

For n=0, the right-hand sides of Egs. (23), (24), and (26) are zero, while the right-ha
side of Eq. (25) is given bgiy = —G1 = —2. Thusyy is a cubic polynomial im andCj o
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can be found by integrating the homogenous linear differential equation given by (24)."
yields

1
Yo = h772 - é’?sa (27)
Shcos
Cio Hyn) (28)

* = Shcoshiyh) + y sinh(yh)’

Forh =1, this corresponds to the basic state of the absorption flow.

If all lower ordersyj, Cyj (j <n) are already determined for> 0, v, can be found
by integrating the right-hand sides four times with respect,tand then matching the
boundary conditions by solving a simple linear equation system. By the method of varia
of constants, the problem of solving the inhomogenous differential equation (24) is
reduced to an integration and solving a simple linear equation system. It can be show
induction that the right-hand sides of (23) and (24) will be (formal) polynomials in tl
termsn, cosiyn), and sinliy n). Hence all necessary integrations can easily be perform
automatically by the computer algebra system.

The series solution (21) obtained in this way is finally substituted in the kinematic ¢
dition (15), which has not been used up to now. This yields the evolution equation for
film thicknessh:

he + [Yo(]e + a[y1(M]s + &?[Ya(h)]e + - = 0. (29)

For our example, this equation is given up to first ordes ioy

58 2 2
he +20°h; +a [ RHPh; — < cotph’he + - StPhey

€115
B 4M Shy2h?h;
(Shcoshyh) + y sinh(yh))?2

+...=0. (30)

If the absorption has no influence of the film flow (i.lkl,= 0), the second-order expansion
obtained in this way is equal to the one given by Lin [5]. If the surface tension terms
rescaled according 68— «2S, the third-order expansion is the same as the one given
Nakaya [9].

Some of the steps in the above outline of the symbolic algorithm were presentec
the model problem only in order to avoid some necessary, but minor case distinction
the general equation. For example, if a buoyancy effect is present, the right-hand side «
nth order equation (23) fap,, depends also 081 ,,, which means that the species equation
must always be solved prior to the stream function equations. Some of these case distin
were included in our MAPLE-implementation of the above algorithm, which is thus capa
of deriving the evolution equations automatically for a wide range of different film flc
problems, if the problem dependent ter®skF;, L, K, B,, andBs in the general equation
system are given as input.

4. LINEAR STABILITY ANALYSIS

Using computer algebra for a linear stability analysis of ¢&re+ 1)st order evolution
equation is straightforward: We substitute a normal mode perturbation of the uniform f
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h=1+3expik(¢ —cr)) into Eq. (29), taylor-expand up to first orderdpand then divide
by § exp(ik (¢ —ct)). The result is thé2n + 1)st order dispersion relatidd(k, ¢) =0. Ina
spatial stability analysis, we assume tkat 1 + ik; andc real. A symmetry consideration
shows thak; must be an odd ardimust be an even function af Hence a symbolic solution
of the dispersion relation, which is consistent with its truncation order, can easily be fol
by assuming expansions

n n
D ST RN g @
j=0

j=0

for k; andc and then determining the coefficienrtg,.1 andi,; by equating like powers of
a. Thus the following formula for the spatial growth rate—which is given-ak; in the
original scaling—is found from the first-order equation for our model problem:

1 M Shy?
2 (Shcosh(y) + y sinh(y))?

1

—aki = a? (1—5(4R — 5cotg — 5a2S) — ) . (32
If the chemical reaction is not present or has no effect on the surface tensioM (0,
Sh=0, ory =0), this reduces to the well-known result that film flow is unstable for sma
wavenumbers iR > 5/4 cotB and that increasing the capillary paramedetecreases both
the critical wavenumber and the growth rates of the unstable modes (see, e.g., Linand V
(3]).

If neither M, Sh nory are zero, Eq. (32) shows that the Marangoni effect caused by t
absorption stabilizes the film flow: The critical Reynolds numiBers increased to

15 M Shy2

Re=14 COtﬂ+ 8 (Shcosh(y) + y sinh(y))?’

(33)

This stabilizing effect can be explained qualitatively by the fact that the gradient of t
concentration profile in the base state is positive. Thus the surface tension will be decre
at crests and increased at troughs of a disturbance, which causes a leveling flow.

In order to resolve the dispersion of linear waves, higher-order evolution equations
be considered. Up to fourth-order corrections, the phase velocity is thus found to be gi

by

40 32 19 "
=2+a?|[ =R(@?S th)— —R>—2) + MR SR — .
C=cta [(63 (@"S+ coth) — 53 + 5 (Shcosty) + 7 sinh(y))?2

N SC( (16y° — 9y) coshy) + 6(y? + 1) sinh(y) + 3y cosh3y)
6y (Shcosh(y) + y sinh(y))3

(16y — 3)sinh(y) + 6y coshy) + 3y Slnh(3y)> H
6y (Shcosh(y) + y sinh(y))3 ’

+Sh

(34)

Again, if the absorption does not influence the flow, this formula reduces to the result gi\
in Lin and Wang [3].

An obvious advantage of the long-wave approximation compared to numerical soluti
of the Orr—Sommerfeld equations is that the results are given in symbolic form and he
allow for a qualitative understanding of the mechanisms. As an example we analyze
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dependence of the growth rate (32) on the Sherwood nur@helf the mass transfer

is very fast Eh— oo) the stabilizing effect of the absorption vanishes since the surfs

concentration will be always equal to the concentration in the air and hence the sul

tension will be constant. On the other hand, if there is no mass transfer &hal 0),

Eq. (32) reduces to the same result since there is now no chemical reaction and hen

concentration gradient in the film. It should be noted that the capillary nuS)lbdrich was
calculated with the surface tension corresponding to the air concentration, should act
be replaced in this case I8+ «?>M in Eq. (32), since the concentration at the surface, :
well as in the whole film, is now zero. This small difference is of course consistent with
truncation order of (32) and is corrected if higher orders are considered.

From the two limits above it is clear that there is a finite valueSbffor which the
stabilizing effectis maximal. This suggests enhancing the stability of the flow by controll
the Sherwood number, which might be done, at least to some extent, by modifying th
flow above the film. The stabilizing effect becomes maximal $te= y tanhy. As an
example, Fig. 2 shows the dependence of the spatial growth rate for the Giluds,
Sh=5, andSh=0.762 which is the “optimal” Sherwood number fpr= 1.

While the above example shows the usefulness of low-order long wave approximat
for the stability analysis of film flow problems with complex transport processes, ther
no decisive way to determine a priori whether the asymptotic result is in fact reliable f
given small but finite wavenumber. The computer algebra methods offer a heuristical
to estimate the range of validity of the approximation, simply by comparing the low-or
results with higher order results. Figure 3 compares the predictions of the dependence
critical wavenumber (i.e., the smallest positive vadesuch thak; = 0) on the Reynolds
number by the first-, third-, and fifth-order approximation. Rof 3 the first and third order

deviate considerably from each other which indicates that the first-order approximatic

0.004
0.003f L+ Sh=0
o - |
© K "
— * .
ol ! . .
- . .® . )
o S, * Y
O 0.002} . .~ Sh=5 .
_C_E "' " “ Il
© R \ \
Q o ‘ '
o S % \
0.001 | S/ 8h=0.762 PR
Vool
O L L L 2
0 0.05 0.1 0.15 0.2
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FIG.2. Stabilization of film flow by controlling the absorption rate via the Sherwood number. Other parame

are givenbyR=2,S=60,=7/2,M =3,Sc=5,y = 1.
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FIG. 3. Neutral stability curves as predicted by different orders of the long-wave approxim&ie(,
B =m/2, no absorption).

no longer valid. Comparison with the fifth-order approximation shows that the range
validity of the third-order approximation is not significantly larger.

However, the weak improvement in the range of stability for higher-order approximatio
is mainly due to the fact that the polynomial approximations (31 @indc are not very
convenient because of the—clearly unphysical—tendency of high-order polynomials
oscillate for increasing. This unphysical behaviour can be overcome by using a ration
(Pad-) approximation instead:

_ki:apo+pza2+---’ C=r0+F2062+---. (35)
1+ o +--- 1+s0a?+---
The easiest way to find appropriate Baabiproximants ok; andc is to calculate the
Pad-approximations of the polynomial approximants which we have already determin
Although the range of validity of these polynomial approximations is very small, they
match the first few derivatives at= 0 of the exact growth rate and phase velocity, whict
is all we need to calculate Padipproximants of the exact solutions.

In addition, the rational approximations can be constructed in such a way that they ref
the expectation that very short waves should decay rapidly because of surface tension
ki — oo asa — oco. The (3,2)-Paéd-approximation folk; is the only one which can be
derived from our fifth-order polynomial approximation which has the expected behavic
fora — oo aswell asthe correct symmetry properties. In Fig. 4, we present predictions of
first-, third-, and fifth-order polynomial approximations and a (3,2)dRapproximation.
These predictions are compared with experimental data taken from Krantz and Owens
for the growth rate and the phase velocity of a disturbance of a film flow on a vertical we
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FIG. 4. Spatial growth rate and phase velocity as predicted by different polynomial approximation orders |
(3) and (5)), the Pagtapproximation (P), and the numerical solution of the simplified Orr—Sommerfeld eq
tion (A). Experimental data taken from Krantz and Owens. ParameteiR-ar£94, S=0.815, and8 = /2.

A numerical solution of the approximate Orr—Sommerfeld equation as proposed by An:
and Goren [17] is also included.

Asshownin Fig. 4, the agreement of the predictions by the fifth-orderapgfoximation
with experimental data is as good as that of the Anshus/Goren method, while the polync
approximations are only valid up to a wavenumber of 0.25. In particular, they pre
neither the critical wavenumber nor the wavenumber of maximum growth rate correc
As indicated by Krantz and Owens [15], the disagreement between the predictions o
Anshus/Goren method for the phase velocity and the experimental data is likely du
nonlinear effects.

Figure 5 shows a similar comparison with data obtained byeltial. [16] for an very
small inclinination anglg andR = 23. Even for this comparatively high Reynolds humbe
the Pa@-approximation still agrees at least qualitatively with the numerical solution and
data, although the polynomial approximations already fail for wavenumbers as small as

5. PERMANENT WAVES

The main objective of this section is to illustrate how higher-order theories obtait
by computer algebra techniques provide a useful heuristic criterion to assess the r

0.006
o
«©
= 0.004 2
Q
E fs!
2 2
20002 3
© 2]
= ©
®© =
[=3 Q
n o}
. 1.8
0.002 0 0.1 0.2 0.3 o} 0.1 0.2 0.3

wavenumber wavenumber

FIG.5. Spatial growth rate and phase velocity as predicted by different polynomial approximation orders |
(3) and (b)), the Pagtapproximation (P), and the numerical solution of the simplified Orr—Sommerfeld eq
tion (A). Experimental data of Liu, Paul, and Gollub. ParameterfRase23, S=62, andg = 0.08.
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of validity of standard weakly nonlinear theories. As an example for a weakly nonline
analysis, we use Landau theory in order to describe the equilibration of a linearly unste
monochromatic disturbance due to the nonlinear interaction with its stable higher harmor
Inorderto accountforthese interactions up to third order of the amplidude of the disturbar
we follow Nakaya [9] and expres¥z, £) as a Fourier series

h=g@E¥+e?)+ 82(h2,2 v 4 hoo -+ h_2> e—2i¢>
+ 83(h3,3 edv + his e’ + h_13 efi‘ph_&3 e*3i<ﬁ) ) (36)

Here the coefficient$_| are the complex conjugates bf,. The dependence of the
amplitudee and the phase on (z, &) is approximated by the expansions

ee =0, & =S4+

37
(p%‘:la ¢r=w1+a)382+.... ( )

Again the substitution of the expansions (36) and (37) into the evolution equation is rea

implemented in a computer algebra system. Equating like powergi@lds a hierarchy of

linear equations for the coefficiertisy, s, andwy. The symbolic solutions of these linear

equations are easily foundhg ; is set to zero, following the arguments given in Nakaya [9]
Sinceg, =0 for a permanent wave, its amplitude is found from (37) to be

€= ,/——. (38)

Permanent waves only exist if this amplitude is real. If we base the analysis on the fi
order evolution equation for the example problem, this condition is given by the symbc
expression

2
0<e?= —“(—4R+5cotﬁ+55a2+

15 M Shy 2
2 (Shcoshy + y sinhy)?

, 15 M Shy?

X (—4R + 5cotg + 355«“ + 2 (Shcoshy + » sinhy)z) . (39)
The positive root of the first factor of (39) is the critical wavenumber already found fro
linear stability analysis, which is an upper bound for the existence of permanent waves.
second factor of expression (39) also suggests a lower bound for the existence of perme
waves. It is intuitively clear that the equilibrating effect of the nonlinear interaction wi
vanish as the wavenumber decreases, since the first harmonics of an unstable mono
matic wave become eventually unstable, too. However, the relevance of the lower bo
predicted by (39) is questionable since the amplitude for the first harnadjiig,| be-
comes larger than close to that wavenumber, which violates the assumptions of Land
theory.

Using a higher-order evolution equation for the weakly nonlinear analysis corrobora
that the lower bound given by (39) is meaningless, as is illustrated in Fig. 6. It compa
the dependence of the amplitudes for the first three harmanied|fi, 2|, £3|hs 3|) on the
wavenumber as predicted by the first- and third-order evolution equation. In the case shc
the results agree reasonably well down to wavenumltf, ®ut exhibit extreme qualita-
tive differences as the wavenumber decreases further. Instead of the treacherously re
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FIG. 6. lllustration of the invalidity of Landau theory far away from the bifurcation point: The contributior
of the first three modes as predicted by Landau-theory using the first- (dashed line) and third-order (solid
evolution equation differ even qualitatively for small wavenumb&s=(1, S= 60, 8 = 7/2, no absorption).

behaviour of the first-order results, the third-order amplitudes finally reach a singula
This is due to the fact that the third-order evolution equation captures more details o
complex nonlinear dynamics of the original system and this nonlinear interaction cau
increasing contributions of higher harmonics to the solution of the evolution equation as
wavenumber decreases, such that the representation (36) finally fails to approximate
this context, it is also interesting to look at numerical solutions of the “fully nonlinear” ev
lution equation (30) which are obtained by a pseudospectral approach similar to the me
used by Joet al.[12]. Figure 7 shows the first three Fourier coefficients of the equilibriu
solutions that evolved from a initial sinusoidal disturbance of a given wavenumber. TF
numerical solutions agree well with the first-order Landau theory down to wavenum
0.065, where they undergo an aprupt change. As the wavenumber decreases, the col
tions of higher modes become more and more important, and it takes longer and long
reach the equilibrium. At wavenumber034, the numerically obtained solution appeare
not to equilibrate anymore but to become time-periodic. For higher Reynolds numbers
numerically calculated equilibrium solutions resemble the results of the third-order Lanc
theory rather than the first-order results. In the vicinity of the pole the numerical soluti
exhibit the “catastrophic” behaviour in time, also observed byeiad. [12].

These numerical observations obviously corroborate that a comparison between t
order and first-order results can be used as a heuristic criterion of the range of validi
the weakly nonlinear theory beyond the bifurcation point. (The intermediate chararact
the “fully nonlinear” evolution equation should be pointed out: while taking only first-ord
terms into account, it captures the full nonlinear mode interaction which is pruned by fi
and third-order Landau theory.) The situation illustrated above for Landau theory ag
also qualitatively with results obtained by a higher-order version of Gjevik’s method
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FIG. 7. Contributions of the first three modes versus the wavenumber of the initial disturbance as predic
by numerical solution of the “fully nonlinear” first-order evolution equation. Also shown are some characteris
waveforms R=1, S=60, 8 = /2 no absorption).

and by a weakly nonlinear analysis based on higher-order equations of the Kuramc
Sivashinski hierarchy (see, e.g., Shlang and Sivashinsky [18]), which again can be der
automatically from the higher-order evolution equations using computer algebra.

6. CONCLUSION

We illustrated how a large class of thin film flow problems coupled with heat and me
transfer processes can be investigated within a common framework using computer alg
methods. Even in situations involving complex transport processes interacting with
flow, the appropriate long-wave evolution equations can be derived automatically, and t
dynamic behaviour is readily studied by standardized implementations of the method
linear and nonlinear stability analysis.

On one hand, an analysis based on low-order equations has the advantage to f
in relatively simple formulas describing the stability behaviour, which provide a goc
orientation for problems depending on many parameters and may suggest strategie
optimization of industrial processes involving thin film flows. On the other hand, consideri
higher-order evolution equations yields heuristic criteria estimating the ranges of validity
both the linear and the nonlinear results obtained at first order. Usirggdgaaoximations,
linear stability analysis based on the high-order long-wave approximation agrees well v
experimental results and numerical solutions of the Orr—Sommerfeld equations even
relatively short waves and moderately high Reynolds numbers.

While presented here for the stream function formulation of the Navier—Stokes equat
for simplicity, the automatic derivation of evolution equations is readily extended to thr
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dimensions. Another straightforward extension which is particularly useful for applicatic
to coating processes is to consider multilayer films, which yields a system of evolu
equations for the thicknesses of the different layers.

The available computer hardware, in particular memory, clearly limits the applicabi
of the symbolic methods presented in this paper. The storage space needed by our MA
implementation of the derivation of the evolution equation increased roughly by a fa
4 from one order to the next for a film without transport processes. For the fifth orde
maximum of 40 Megabytes was necessary. The computing time for the fifth order was a
20 minutes on a IBM Risc 6000 workstation.

A more fundamental limitation of the computer algebra methods is given by the fact
the zeroth order of the equation hierarchy must allow a closed form solution. Thus 1
cannot be applied to film flows of fluids with complex rheological behaviour or transp
processes involving higher-order chemical reactions. Despite these restrictions, ther
large number of applications involving thin film flow coupled with transport processes,
which the computer algebra methods outlined in this paper are a very useful engine
tool.
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